Generalized Fourier -
نویسنده
چکیده
We study a generalization of the Fourier-Mukai transform for smooth projective varieties. We nd conditions under which the transform satisses an inversion theorem. This is done by considering a series of four conditions on such transforms which increasingly constrain them. We show that a necessary condition for the existence of such transforms is that the rst Chern classes must vanish and the dimensions of the varieties must be equal. We introduce the notion of bi-universal sheaves. Some examples are discussed and new applications are given, for example, to prove that on polarised abelian varieties, each Hilbert scheme of points arises as a component of the moduli space of simple bundles. The transforms are used to prove the existence of numerical constraints on the Chern classes of stable bundles.
منابع مشابه
Estimates for the Generalized Fourier-Bessel Transform in the Space L2
Some estimates are proved for the generalized Fourier-Bessel transform in the space (L^2) (alpha,n)-index certain classes of functions characterized by the generalized continuity modulus.
متن کاملGENERALIZATION OF TITCHMARSH'S THEOREM FOR THE GENERALIZED FOURIER-BESSEL TRANSFORM
In this paper, using a generalized translation operator, we prove theestimates for the generalized Fourier-Bessel transform in the space L2 on certainclasses of functions.
متن کاملAn Lp-Lq-version Of Morgan's Theorem For The Generalized Fourier Transform Associated with a Dunkl Type Operator
The aim of this paper is to prove new quantitative uncertainty principle for the generalized Fourier transform connected with a Dunkl type operator on the real line. More precisely we prove An Lp-Lq-version of Morgan's theorem.
متن کاملA general construction of Reed-Solomon codes based on generalized discrete Fourier transform
In this paper, we employ the concept of the Generalized Discrete Fourier Transform, which in turn relies on the Hasse derivative of polynomials, to give a general construction of Reed-Solomon codes over Galois fields of characteristic not necessarily co-prime with the length of the code. The constructed linear codes enjoy nice algebraic properties just as the classic one.
متن کامل2-D affine generalized fractional Fourier transform
The 2-D Fourier transform has been generalized into the 2-D separable fractional Fourier transform (replaces 1-D Fourier transform by 1-D fractional Fourier transform for each variable) and the 2-D separable canonical transform (further replaces the fractional Fourier transform by canonical transform) in [3]. It also has been generalized into the 2-D unseparable fractional Fourier transform wit...
متن کاملOn Fourier Type Integral Transform for a Class Of Generalized Quotients
In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse proble...
متن کامل